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Abstract - A dvnamical contact problem is studied in this paper. It involves an elastic half-plane
which is indented by a rigid wedge-shaped body. In an effort to depart from the classical formulation
of this problem. we consider frictional and tangential-displacement effects. More specifically, it is
assumed that Coulomb friction develops between the contacting bodies and also that the tangential
surface displacements are not negligible and should thus be coupled with the normal surface
displacements in imposing the contact-zone boundary conditions. Certainly. the foregoing con-
siderations model the dynamic indentation of an elastic half-plane in a more realistic way than the
usual frictionless and uncoupled formulation. The contact region is assumed to extend at a constant
sub-Ravieigh speed (this situation can be achieved by conveniently specifying the indentor kinetics),
whereas. due to symmetry. friction may act in opposing directions on opposite sides of the indentor.
The study exploits the problem’s self-similarity by utilizing homogeneous-function techniques along
with the Riemann -Hilbert problem analysis. As the present exact analysis shows, both the sign
reversal of the tungential traction and the coupling of the displacement components along the
contact length strongly influence the contact-stress behavior at the wedge-apex station. In particular,
friction tends to create a power-tvpe singularity at the changeover point of boundary conditions
(due to symmetry. this pomt here is the point where the wedge apex makes contact with the half-
plane surtace). whereas the tangential-displacement effect tends to eliminate singular behavior there.
Representative numerical results are given for the normal stress and tangential displacement along
the contact zone. and the relation between the contact-zone expansion velocity and the indentor
velocity

INTRODUCTION

Transient dynamical indentations of elastic half-spaces have been investigated during the
last two decades mainly through the efforts of Willis (1973, 1989), Bedding and Willis
(1973, 1976). Afanas’ev and Cherepanov (1973), Brock (1976, 1977, 1978, 1979, 1981),
Aboudi (1977), Cherepanov (1979). Kawatate (1975), Shukla and Rossmanith (1986),
Rossmanith (1987). and Downey and Bogy (1987). Even more recent developments include
work done by Georgiadis and Barber (1993). Brock (1993). and Brock and Georgiadis
(1994), among others. These rapid-indentation problems enjoy applications in rock,
penetration and particulate-media mechanics [see e.g. Altiero and Sikarskie (1975);
Cherepanov (1979) : Shukla and Rossmanith (1986)].

Typical of such problems is the indentation of an elastic half-plane by a rigid punch,
which is rapidly driven into the deformable body so that stress waves are generated. The
contact region may expand at a velocity on the order of the elastic-wave velocities (therefore,
this velocity determines the dynamic character of the problem), whereas the punch velocity
may generally be much lower. Important analvtical techniques have been developed to deal
with these problems. c.g. by Willis (1973). Afanas’ev and Cherepanov (1973), Brock
(1976, 1977, 1978). Cherepanov (1979). and Brock (1993). Also, general questions of
existence/uniqueness of solutions were dealt with by Georgiadis and Barber (1993).
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Fig. 1. Dynamic frictional indentation of an elastic half-plane by a uniformly moving rigid wedge.
The tangential displacements are not negligible in imposing the contact-zone boundary condition.

In the present work. the well-investigated problem of wedge indentation of a linearly
elastic half-plane is re-examined but with the additional consideration of frictional and
tangential-displacement effects. More specifically, as Fig. 1 shows, we consider a symmetrical
rigid wedge that begins at time = 0 to indent the half-plane surface through vertical
motion at constant velocity. The present formulation assumes that: (a) Coulomb friction
is generated between the rigid and deformable body and, therefore, the friction- generated
shear should act in opposing directions with respect to the origin O, along the expanding
contact length, and (b) the tangential surface displacements are not negligible and should
thus be coupled with the normal surface displacements in imposing the contact-zone
boundary conditions. Thus, our analysis and results depart from the ones based on the
classical formulation of the problem [see e.g. Afanas’ev and Cherepanov (1973) ; Eringen
and Suhubi (1975): Bedding and Willis (1976)], which assumes frictionless contact and
non-coupling of the displacement components.

From the viewpoint of mathematical analysis, the present problem is an initial/
boundary value problem (IBVP) invoiving wave equations for the dilatation and rotation
under mixed conditions prescribed along changing lengths. Problems of this type do not
generally lend themselves to a simple analytical treatment. However, the solution is here
effected by exploiting the problem’s self-similarity and utilizing homogeneous-function tech-
niques (Brock, 1976, 1977, 1978) and the Plemelj and Riemann—Hilbert problem analyses
(Gakhov, 1966; Roos, 1969). Numerical results for certain field quantities are easily
extracted then from the analytical form of solution by simple numerical integration.

Finally, it is noted that in indentation problems, tangential-displacement effects were
first considered by Brock (1979. 1981) in dynamical studies, whereas sign reversals of the
friction-generated shear traction were considered by Roberts (1970), Brock er al. (1993,
1994), Brock (1993), and Brock and Georgiadis (1994) in statical as well as dynamical
studies. These previous analyses indicated that: (a) the displacement coupling establishes
non-singular contact-stress behavior at half-plane points making contact with geometrical
discontinuities of the indentor (in contrast with the familiar contact-stress singularities
resulting from the standard uncoupled problem formulation) and therefore yields a more
natural solution behavior, and (b) the point on the contact zone where the shear traction
reverses sign acts as a point of flux singularity for the contact stress. Therefore in our
problem where both effects are included, it is expected (and, indeed, verified by the analysis)
that these effects will compete with each other in establishing the stress distribution along
the contact zone.

In this connection, the present problem can be considered as a generalization of the
dynamical wedge indentation problems studied by Brock (1979), and Brock and Georgiadis
(1994), since it assumes the combined effects of displacement coupling and friction reversal.

PROBLEM STATEMENT

Consider an isotropic. linearly elastic half-plane y < 0 under plane-strain conditions.
As depicted in Fig. 1, assume that this body, which was initially at rest, is disturbed by
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dynamical and frictional wedge indentation ; with contact first occurring at the point x = 0,
y = 0 corresponding to the wedge apex at time 1 = 0. The constant indentor speed V" along
with dimensional considerations lead us to anticipate a self-similar solution in which the
particle velocity in the body is a homogeneous function and the contact region expands at
constant velocity « [see e.g. Eringen and Suhubi (1975)].

In order for a dynamical state be created in the medium, the velocity a should be on
the same order of the characteristic wave velocities. However, the present analysis will be
restricted to the regime x < ¢z, where ¢, is the Rayileigh-wave velocity (Knowles, 1966 ;
Achenbach, 1973), so as to avoid non-uniqueness of the solution or violation of the Signorini
contact conditions (Georgiadis and Barber, 1993). Also, we must have V' « «, since small-
strain considerations demand that the inclination of the wedge face must obey the condition
(n—2@)/2 « 1, where O is the half-wedge angle.

The pattern of stress waves generated by the imposed surface displacement is also
shown in Fig. 1. The dilatation and rotational waves are cylindrical and radiate away from
the apex at speeds ¢, and c¢.. respectively. Because the surface is stress-free outside the
contact region, the faster-travelling dilatational wave generates secondary cylindrical
rotational (head) waves whose wavefront envelopes define the wedge-like regions shown.
In addition, Rayleigh waves propagate along the surface away from the apex.

By utilizing a system of polar coordinates (r, #) in addition to the (x. y)-system shown
in Fig. 1, the governing equations for such a state are written as

cu, 1 /cu,
A= . + , (f‘() +u,>. (1a)
b C(reuy) | Cu,
o oD 1b
D P T (15)
ARz 1—-2m" [¢u, )
G, = e + . 20 +u, || (2a)
w1 /cu, A L, Cu,
o= — |~ | = +u |+ =2m)—| (2b)
rn: ¥ (70 Cr
1 /Cu, Cuy
O = I e —Uuy |+ ol (2¢)
s 1 &A , 1
VA=— " V= Y (3a.b)
7 Cr oy Ot

where A is the dilatation, « is the rotation, (u,.u,) and (,, g,.6,,) are the components of
the displacement vector and stress tensor. ¢, = [(A+2u)/p]' . ¢; = (u/p)"2 m = ¢cyfc,, A
and p are the Lamé constants of the material. p is the mass density. and V? is the Laplacian
operator in the (r, 0)-plane. All field quantities above are functions of the spatial variables
r, 8 and the time variable ¢.

Now, the boundary. continuity and initial conditions for the problem are written as
Uy = —Vi+{r+u)-cot® for(@=0.r<a). and (0= —n.r <), (4a)
ge+sgn(x) -y 0,=0 for(@=0.r<or). and (0= —m, r < ar), (4b)

00.0,4, =0 Tfor (0 =0.r> )., and (0= —mr > at), (4¢)
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Cu, Cu R
A u,, Ll”.fr.*;;” =0 forr=c¢t,—mT<0<0, (5a)
cto
w=0 forr=ct/th,.—1<0<0, (5b)
Cu, (u
1< 00Uty —, A[” =0, ©6)
¢t ¢

where sgn( ) is the signum function, ; is the friction coefficient (positive constant), and we
have also defined m, = ¢,/¢,. (k = 1.2). h, = | for [cos™'(m)—n] < 8 < —cos™'(m;) but
otherwise 4, = m,[cosO|+ (1 —m;)' *sind.

In the above set of conditions, eqn (4a) expresses the imposed-displacement equality
in view also of displacement coupling. For notational simplicity and convenience in treating
the uncoupled problem, viz. with «, being absent in eqn (4a), the latter equation is rewritten
as

g+ pru, = —Vitr-cot® for(0=0.r<or)y, and (@@= —n,r<at), N

where ff = —cot ® can now be considered a general coupling constant. Equation (4b)
expresses Coulomb’s frictional law, and also accounts for the possible reversal of friction-
generated shear reflecting thus the problem symmetry, i.e. we assume that the contact shear
reverses sign at the wedge apex when g, is itself symmetric. Finally, eqns (5a) and (5b)
come from physical considerations, regarding continuity of the fields along wavefronts [see
e.g. Brock (1976)].

The solution to the above IBVP must also obey certain physical constraints. Specifically,
an acceptable solution should satisfy the Signorini contact conditions [see e.g. Fichera
(1964) ;: Panagiotopoulos (1985) ; Barber (1992)], which state that: (a) the normal contact
stress is non-tensile, and (b) there is no interpenetration between indentor and half-plane
material outside the contact length. For this type of problem, Georgiadis and Barber (1993)
showed generally that. as long as the contact-zone velocity is confined to the sub-Rayleigh
(2 < ¢g) or superseismic (x> ¢ ) range, the Signorini inequalities are always satisfied by a
unique solution. In any event. for particular IBVPs, these inequalities can be checked after
obtaining the solution.

Another physical constraint on the solution comes from the particular friction law
utilized here. Indeed. the Coulomb model implies consistent directions of shear stress and
relative slip velocity on the material along the contact zone, i.e.

>0 for(0=0.r<ar). and (0= —m,r <ai). )

We shall next provide an analytical scheme for solving the problem defined by eqns
(H—=(7). Tt will be seen also that this solution satisfies all the aforementioned physical
constraints.

HOMOGENEOUS FUNCTION TECHNIQUE

As discussed in the Introduction, the homogeneous-function (or self-similar) technique
developed by Brock (1976. 1977, 1978) is utilized. This method makes use of the Busemann—
Chaplygin procedure [see e.g. Achenbach (1973); Miles (1960)] and analytic-function
theory. Only basic results are presented here.

Consider a general uniformly expanding contact region over the surface of a half-
plane. where the imposed normal displacement is a given polynomial homogeneous of
degree #n = 1 in r and ¢. It can be further shown that the following displacement/stress set
in polar coordinates
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u=u+iuy, s, =0,—0,+120,, 5o=0,—10,, )]

which formally satisfies quiescent initial conditions, wavefront continuity conditions and
the governing elasticity equations in y < 0 (—n < 0 < 0), for a given #, is obtained as

Qeymyu = J,[(vt—ric ) UW )] —ids[(vt—rjc, )U(W))), (10)
(ci/ws, = — Qci/wse+ (1 =m*) ], RUW) = V(W1)], (I11a)
Qcijwse = i [V(W)] =L V(W) (11b)

where
UW) = Re[p@W]—iIm (W), W, = QG + o), (122)
V(W) = K(v) Re [p ()W, ]—12Im (W,), K(v) =2—v*/m?, (12b)

and the operator J, is defined as the real integral

'y iy,

(1= 1)1 f) = f v e —rie) ' de, (13)

ricyt

with k = 1,2 and m, = 1, m, = m = (c,/c,). Moreover, the complex variables {; are given
by

{y = my sech [sech™' (v/m,) +16], ¢, = my sec[sec™' (v/my,)+0|], (14a,b)

for v < m, and m, <v < (m/h,), respectively, where + denotes 0 < |0 < 7/2 (+),
n/2 < |6] € = (—). The functions

Pk(C) = (l _Cl//f’nl‘(z)71 2, (15)

are analytic in the complex plane { = £ +in cut along |£| < m,, y = 0 and in eqn (12) are
evaluated in the same quadrant as ;. The arbitrary functions €, and w, are defined in the
upper and lower half of the {,-plane, respectively. In this way, the solution to any particular
problem [such as eqns (1)—(7)] is now reduced to constructing these functions in their
regions of definition so that, upon substitution of eqn (14), the boundary conditions are
satisfied by eqns (10) and (11).

A further general result can now be obtained in view of a stress-free condition on the
half-plane surface outside the contact zone, i.e. a condition like eqn (4c). Specifically, the
latter requirement is automatically satisfied if in the upper half of the complex {-plane

RQ, = —Kp,F—i2G. RQ, =Kp,G—i2F, R=4—Kpp,, (16a—)

while identical equations hold for the w,-functions in the lower half. The arbitrary functions
F(0), G({) are analytic everywhere except possibly along a line defined by the mapping eqn
(14a) of the contact length in the (r, #)-plane, i.e. (—p < & < p,n = 0), where p = («/c,) in
the present problem. In eqn (16a), R({) is the familiar Rayleigh function having a double
root at { = 0 and simple roots at { = +mz = +(cg/c)).

For insights into the appropriate behavior of the functions F({) and G({) in the {-
plane, we note that a point at infinity corresponds to wavefronts in the physical plane, the
origin corresponds to the apex, and that certain points along the Re({)-axis correspond to
the edges of the contact length and Rayleigh wavefronts. At these points, one has to take
into account physical requirements like wavefront continuity, integrability of possible stress
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singularities and asymptotics at the punch-surface separation points. Thus, based also on
their definitions in eqn (16) and symmetry about the origin, we conclude that F (), G({)
must be finite at { = +m, and should behave no worse than

F,G=00); FG=00{); FG=0({£pl™"™), (17a)

as { — o, { —0,and |{ £ p| — 0, respectively, where 0 < ¢ < 1.
Finally, substitution of eqn (16) into eqns (10)—(15), shows that for0 <r < ¢;£,6 =0

and 6 = —m, the complex displacement and stress are given in terms of F, G by
1 bo(vt—rfey) LF . G
u= D|— —ip,
2¢,n[(n—1)!] e U2 R m:R
. (LG . V'F
+1D<—R— +1p, ﬁ)il do, (18)

[D(F) +iD(G)] dv, (19)

S

_ K f (vt =rje,)"”!
T 23—y,

n+2
foyt v

where

DO =Re[()"—07), [ =f¢£i0), f*=f(vxi0) ford=0,
f* =f(—v+i0) for 8= —mn, (20)

L=2—Kpp. @n

The solution for any particular problem requires the determination of F and G in view
of the insights noted above. This can be done by imposing the boundary conditions and
solving mixed BVPs in the {-plane. General forms for the surface displacement and stress,
in terms of certain constants, can thus be obtained. Finally, a displacement matching
procedure based on the imposed displacements in the contact region provides the values of
the aforementional constants, thereby completing the solution.

BASIC SOLUTION

The F (), G({) functions for the problem (1)-(7) (wedge indentation, n = 1) will be
obtained in this section.

In view of eqns (9¢c) and (19), eqn (4b) is automatically satisfied if

Re(F*—F~) _ 1
Re(G*—G-) sgn(Rel)y

for —p<Rel{<p, Im{-0, (22)

which defines a Plemelj problem, with the following solution (Gakhov, 1966 ; Roos, 1969)

G(0) = sgn(Re )y F(0). 23)

Now, in view of the general form of the u-displacement in eqn (18) and with the help of
eqn (23), eqn (7) is satisfied if and only if

Fr{O)=CQ)-F () for—p<Rel<p, Im{-0, (24)
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Fig. 2. Branch cuts for the functions p,({) in the complex {-plane.

where
0 = [A(C)ﬂB(é)]; CE) = A:(i)ﬂB:(f)’ (25a, b)
[A(0)+1B()] A () —1B ()
R . L 2—-K| ; 2
AQ) = sgn ( CC)REZ-FY) ) . A =sgn (&) (B+7)- aﬁ%’ (26a, b)
BO) =C'[P2(C)—ﬁ'}"171(0]’ B (9) _ Ellpal=pr-Ip T (27a.b)

m*R() m*(4— K|l 1pal)
The results in eqns (25b), (26b) and (27b) were obtained by considering limiting values of
the functions involved, as Im{ — +0 along the branch cuts defined by p.({) and shown in
Fig. 2.

Equation (24) defines a homogeneous Riemann—Hilbert problem (Gakhov, 1966;
Roos, 1969), the solution of which may provide the as yet unknown function F ({). Indeed,
it is obtained as

F(©O) =Pm(C)'€XD[(2ni)"l J ‘“—[C@du}

, v

- P,,,(C)~exp':n'1 r Mdv} (28)

., v=C

where P,({) is a polynomial (entire function) determined by the required asymptotic
behavior in eqn (17), and the function k*(v) is found from eqn (25b) as

B~ (v) v (| pal =By 1pil)
K*¥(v) = ——=sgn () k(v), k({v)=— , (29a,b)
A () O B @—Kip 1pa))
) By—1
th x(0) = ————.
with m*(B+7)

An immediate observation, however, in eqns (24)—(29) is that Hélder continuity does
not prevail since tan™~'[x*(v)] jumps from a certain value to the opposite one when v crosses
zero. Accordingly, the underlying theory for the Riemann—Hilbert problem cannot be
utilized for the interval (—p < ¢ < p,n = 0), but one has to consider a two-part line of
discontinuity [in the sense of eqn (24)],1.e. (—p < ¢ < 0,5 =0), (0 < & < p,n = 0), where
the x(v) function is now Holder continuous. Thus, eqn (28) is written as
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FQ) = Pm(o-exp[—n*‘ [ o TN gy g et th‘“b—[z(’)—]da} = P,(0) HUO).
Jor s 0 -

(30)

Following now the usual procedure for this class of problems, one must determine the
behavior of the exponential term near the end points £ = —p, 0, p; n = 0 in order to check
whether the physical expectations for the mathematical solution are fulfilled. Otherwise,
this so-called fundamental solution should be modified. Here, this procedure is carried out
by invoking a well-known property of Cauchy integrals [see e.g. Gakhov (1966), p. 53). To
this end, by introducing the new function Q(&) as

| }=%[an. [—mz(ﬁH)Q—Klplllpzl)} 31

Q(i)E—ltanl[ : 2
: E(pA—=By-1piD

where 0 < Q(&) < 1/2fory > [l =cot®, —1/2 < Q) < Ofory < [f] =cot®,andQ =0
for y = |B| = cot © or for both a frictionless and uncoupled problem, the exponential term
in eqn (30) becomes

H(E) = €)' 29| p = 8] 9% exp (O £ infi— Q)] for 0 <& <p, n— L0,

(32)
where (—n) replaces () above, for —p < ¢ <0, and
P Q(r) — Q& 7 Qp) — Q¢
b(é) = J sgn (v) - (L)\ 7(5)(11. = ZJ —(Lv)—m(qv'dv. (33)
—-p v _é 0 vt —C”

In the same manner [see e.g. Gakhov (1966)). we find that the fundamental function is

H(E) = o1 206002 pty~ U2+ ghidy, (34)
where
o Q) —Q(¢
A Eo) = f sen 0= de, (35)
—p

and &, is an arbitrary point on the interval {—p, p] which can be chosen as &, =0 for
convenience in calculations presented below. Consequently, eqn (34) becomes

H(C) = gl’zﬂo(cz __pl)—l 2+Q, e/\n(;)‘ (36)
with
1 2 v
Q,=Q, =0) =—tan™' m(f+7) , 37
n 1y
B 4 Q) —Q
Ao(D) = A& = 0) = f sgn(v)—(;)_ Fde, (38)

The first term in the r.h.s. of (34) reflects the absence of Hélder continuity in eqn (24)
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coming from both the changeover of boundary condition (4b) in the physical problem and
the displacement-coupling formulation expressed by eqn (7).

Now, by taking also into account the asymptotic conditions [eqn (17)], it is concluded
that the full solution to eqn (24) is

F() = —iQ- - H(Q), (39

where Q is a real constant, which will be determined later on through a displacement
matiching procedure. Several important results, however, can be obtained without specific
knowledge of that as shown in the next section.

CONTACT STRESS AND RESULTANT NORMAL FORCE

In this section, general expressions are derived for the contact-stress distribution and
the resultant normal force exerted on the contact zone. These results can be obtained prior
to the evaluation of the constant Q and yet exhibit important aspects of the physical
problem.

Starting with the normal contact stress (r < x7). eqns (9¢). (19) and (39) when combined
give

'r .2 12-9@) 4
oulr0 = 0.1 = — 28, J e cos [nQ(r)]'< . ;) = (40)
SR p—v v’
Symmetry. of course. implies that g,(r,0 = —7.¢) is also given by eqn (40). Thus, the

contact stress can be obtained from the latter expression by simple numerical integration.
Also, animmediate observation is that at the contact-zone end (r = az,8 = 0),i.e.asrfc,t —
p, the stress vanishes and, therefore, the solution exhibits the expected smooth transition
from contact to separation.

It is of interest. next, to extract from eqn (40) the contact-stress behavior at the wedge-
apex station (origin). As r — 0, depending upon the interval where Q(v) takes values, i.e.
depending upon the relative magnitude of the friction coefficient y and the coupling
coeflicient || = cot @, the integral may become regular, singular or hypersingular, and
therefore the following three cases are distinguished :

(a) For; < [Bl =cot ® and 0 < ¢ < p, eqn (31) implies that —1/2 < Q(v) < 0, and
the integral in eqn (40) is regular when #/¢;1 = 0. Thus. the contact stress at the wedge apex
station will be finite in this case where the displacement-coupling effect is stronger than
the friction-reversal effect. The same conclusion also applies in the absence of friction
corroborating in this way earlier results obtained by Brock (1979).

(b) For y = |B| = cot ® or for both a frictionless and uncoupled formulation of the
problem, eqn (31) implies that Q(r) = 0, and the integral in eqn (40) is singular at r/c,t = 0.
An asymptotic evaluation gives

! 2[2 N2
ulr = 0.0 =0.0) = ~~Q§'ln [“ +<““A1) }+ (41)

(‘] ¥ r..
thus demonstrating a wedge-apex logarithmic singularity in contact stress. Of course, in
the classical formulation of the wedge indentation problem with #o friction and no coupling
effects, this is a well-known result [see e.g. Eringen and Suhubi (1975) ; Bedding and Willis
(1976)], but it is noteworthy that within the present formulation this also appears for the
limit case where 7 = cot ©.

(¢c) Fory > |f] =cot®and 0 < v < p, eqn (31) implies that 0 < Q(v) < 1/2, and the
integral in eqn (40) is hypersingular at r/c,7 = 0. However, an asymptotic evaluation can
still be performed according to the following general result (Hadamard, 1923)
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4 “ f(0) . S (x) ,
111-1111 [J\ (1-.__\—)‘7’ d‘L’:\ = }EI(]) [m], with 1 < ¢. (42)

Indeed, in view of eqn (42), eqn (40) gives

Qu-exp (So) - cos (nQg) [aur\*
— = = — — .. 43
ou(r—0,0=0,1) = 20c.a " + ..., (43)
where €, is already given in eqn (37), and
4 h] _Q
So=bE=0)=2 J Q~(——W)W——9dw. (44)
0

It should be noted that in this case, where the friction-reversal effect is stronger than the
displacement-coupling effect, the contact stress exhibits a power-type singularity of order
2Q), < 1. This result is in agreement with previous ones obtained for uncoupled elastostatic
and elastodynamic indentations in the presence of friction reversal (Roberts, 1970 ; Brock,
1993 ; Brock and Georgiadis, 1994 ; Brock et al. 1993, 1994). The physical explanation of
this clue stems from the fact that a distributed-loading discontinuity at 0 occurs [as eqn
(4b) implies] and, thus, the origin 0 is a point of flux singularity (Erdogan, 1978). At the
same point also, a geometrical discontinuity occurs and this is responsible for the logarithmic
singularity encountered within the frictionless and uncoupled problem formulation.

Finally, it is of interest to observe that the singular contact-stress behavior in eqn (43)
suggests the possibility of surface cracking beneath the indentor, and thus the present
results may also be useful in fracture mechanics.

Now attention is directed to the determination of the normal force P on the contact
zone (r < at; 8 = 0, — 7). Notice that this external force required to drive the indentor into
the deformable medium is unknown at the outset and has to be determined from the
solution. This is in some contrast to static contact problems, where the external force is
prescribed in the analysis. Here, however, it is the indentor velocity which is prescribed
reflecting the difficulties encountered and the assumptions made in solving analytically
transient contact problems. The P force follows from the relation

2 p
P= —2J oo(r.0 =0,5)dr = —2c,t°J ge(w, 0 = 0)dw, (45)

0 0

where g, is given by eqn (19) for a general self-similar indentation. Substitution of eqn (19)
in eqn (45) along with an interchange of integrations leads to the following general result:

P=— do. (46)

w "Re(F*—F7)
anl |,

) U2
In our case, where F({) is given by eqn (39), the above equation yields

Y
=LQt_
Cy

P 47)

From its definition in eqn (45), P should be a positive quantity and therefore Q must also
be positive. This, in fact, is verified by the numerical results. Accordingly, the normal stress
given by eqn (40) is appropriately compressive in all points of the contact zone.
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FURTHER ELABORATION OF THE SOLUTION

Here, we obtain the as yet unknown constant Q appearing in the solution and also an
interrelation of the problem parameters «, ¥ and @. Both results are found by matching
the imposed contact displacement [given by eqn (7)] with the general form [eqn (I8),
incorporating the basic solution eqn (39)] predicted by the mathematical analysis. The
latter analysis gives the following expressions for the contact-zone displacements (r < af):

ug(r,9=o,z)=§1c~l-r (l”uﬂ Re[(X+iY)* - F* —(X+i¥)™ - F~]dv
1 wt=rjc,) —r/c)) +
t5o f RN HY) (X)) Ads,  48)
u,(r,9=0,z)=i-f W_—:/C')-Re[(S—iT)“-F*——(S—iT)“-F']dv
1 eyt v

+%-f(L;I_Tr/fQ-Re[((S—iTV—(S—iT)_)'F]dv, (49)
1 Jp v

where

L 2
x=1, YEZZZLR, (50a, b)
L 2
=2 sz’:;;, (S1a,b)
F(U) — ”‘IQ . UZ-ZQO(UZ __pZ)v 1/2+Q, e""“", (52)

and F *(v), F ~(v) result by combing eqns (32) and (39).

Equations (48) and (49) can take explicit integral forms by considering the behavior
of the p({) functions along pertinent intervals of the real axis in the cut complex-plane (see
Fig. 2). Also, surface particle velocities can readily result by applying the Leibnitz rule to
these expressions.

Now, by using eqns (48) and (49) in eqn (7) and by taking also into account eqn (24),
one obtains the following algebraic system, which provides Q and the interrelation of the
problem parameters «, ¥ and ©

O =L)—B-Q-Us+1s) =cV, (53a)
Q- (s—1)—B-Q (I;+1) = ¢} cot®. (53b)
where
]l =tf vfznﬂ(vz —p2)7”2+Q°CA“(”Y;(U)dv, (543)
P

1
I, = J 0™ ¥ (p? —p?) "2+ MO Y - (p) do, (54b)
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I3 — jf L‘fl —ZQ(,(UZ __pZ)— 172+Q, el\n(v) Ya— (U) dv, (54C)
§4
i
14 — f T 11 »20(,(02 _p2)~ 1249, er(v) Y;: (U) dl), (54d)
Is = J[ . mn(l,z ~p2)' 1240 aAg() T, (v)dv, (55a)
r
1
16 — j L,~ZQ(,(03 _pZ)— 124+Q, er(r)Tb~ (D) dv, (55b)
I, = J[ 7T B (p? — ) 1R M T () do, (55¢)
14
1
18 —_ J v 1 ~ZQO(02 _[)2)~ 1:24-Q4 e/\o(v) T,,-(U) dv, (55d)
and
_ |pal v (562)

T M@= K| Ipal)

= KZL’ZK' Pyl (K-p3 =2y |p.])

. (56b)
b 16+ K*pip}
- v pi o’ (57a)
A=K piltpal)
- =2m’”v‘iP1“(ZY‘K'|P2|)' (57b)

16+ K*pip3

In eqns (54) and (55), { signifies Cauchy principal-value integrals, since the Rayleigh pole at
v = my occurs in the respective integrands.

Finally, it 1s noted that in the limir case where displacement coupling is neglected, the
coupling coeflicient f(= —cot @) should be set equal to zero, and then the system (53)
degenerates to the form given by Brock and Georgiadis (1993).

NUMERICAL RESULTS AND CONCLUDING REMARKS

Some numerical results are here presented and discussed. These results were obtained
for characteristic wave velocities ¢, = 1870.83 m/sec, ¢, = 1000.00 m/sec and cz = 927.41
m/sec (m = ¢,/c, = 0.534 and my = cx/c, = 0.495), wedge inclination angles ® = 86° and
® = 89°, and several values of the friction coefficient 7y,

The integrals in eqns (54) and (55) were evaluated numerically by the Gauss rule.
Also, the Cauchy principal-value integration was performed almost in accordance with its
definition, i.e. a very small integration interval symmetrically situated about » = my is
excluded with the idea the unbounded positive and negative areas to the left and right of
the singularity cancel each other. In the latter procedure, the extent of the small excluded
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du, (r=at, 6=0, t)/3t
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n
T
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Fig. 3. Values of the tangential particle velocity at the contact-zone edge.
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Fig. 4. Relation between the contact-zone expansion speed x and the indentor speed V' for the
classical (uncoupled and frictionless) wedge-indentation problem.

segment is determined by decreasing its length until the first divergence in the results occurs.
This technique was tested and proved very accurate against special Cauchy principal-value
integration algorithms, for the case of otherwise smooth integrands, in another recent work
of ours (Brock et al. 1994). Indeed, the integrands in eqns (54a),(54c¢). (55a) and (55¢) are
smooth and monotone functions when the interval near the pole singularity is excluded.

First, the sign of du,(r < at,0 = 0, 1)/t was checked over several values of the contact-
zone expansion speed . It was always found that &, > 0 along the contact zone (except, of
course, at r = 0 where #, = 0 due to symmetry). Thus, the constraint in eqn (8) is satisfied.
Figure 3, for instance, shows values (positive) of the tangential particle velocity at the edge
of the contact zone (r = at) for ® = 89, v = 0.6 and variable x. The latter quantity was
obtained from eqn (49) as Cu,(r = at,0 = 0,1)/¢t = (Qic)[(Is+ 1) — (I, + L) (2/cy)]. One
can clearly observe in Fig. 3 that there is a tendency of the elastic half-plane material to
slide out (in the tangential direction) of the contact zone (away from the wedge apex), and
this result is in accordance with other recent results for the uncoupled frictional problem
(Brock, 1993 ; Brock and Georgiadis, 1994).

Next, another check on the present solution is provided by numerically obtaining the
relation between the normalized contact-zone expansion velocity («/c,) and the normalized
indentor velocity (V/c,), for the uncoupled (f = 0) and frictionless (y = 0) case. Indeed,
our results in Fig. 4 agree with the results obtained by a different solution technique for the
latter classical formulation of the problem (Eringen and Suhubi, 1975). However, it is
noticeable that the o« — V relation remains almost the same for the present non-classical
problem as well. For instance, Fig. 5 shows the x— V relation for two different half-wedge
angles (® = 86° and ©® = 89°) in a problem formulation with coupling (8 = —cot ®) and
frictional (y = 0.4) effects.

Finally, Figs 6 and 7 illustrate the distribution of the normalized contact-zone normal
stress oy(r < az,0 = 0,1) along the normalized contact region (r/c,f) for p = z/c, = 0.3.
Two different values of y were considered for @ = 86 and 89 . In the first case of weak

SAS 32/23-F
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Fig. 5. Relation between the contact-zone expansion speed « and the indentor speed ¥ for the non-
classical (coupled and frictional) wedge-indentation problem.
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Fig. 6. Contact stress distributions for @ = 86°. The solution behavior at the wedge-apex station
depends upon the relative magnitude of ® and y.
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Fig. 7. Contact stress distributions for ® = 89°. The solution behavior at the wedge-apex station
depends upon the relative magnitude of @ and y.

friction (y = 0.001), the coupling effect dominates the frictional effect (y < |f| = cot ®)
and ay(r — 0,0 = 0,1) is finite at the wedge-apex station. In the second case of strong
friction (y = 0.6), the frictional effect dominates the coupling effect (y > |B] = cot ®) and
a¢(r = 0,8 = 0, 1) becomes singular at the apex. Also, Figs 6 and 7 depict that the contact
stress does not depend appreciably upon the relative magnitude of § and y in regions not
too close to the apex station. However, the coupled formulation yields a more natural
solution behavior with finite stress at every point of the contact zone.
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In conclusion, the present exact study models certain realistic contact mechanics
situations where a rigid wedge-shaped body rapidly indents a deformable half-plane. The
solution is valid for an elastic half-plane and, thus, it remains valid only during the
early time interval of the dynamic contact of the two bodies. Frictional and tangential-
displacement effects are included, and the analysis shows that these have a significant
influence on the contact-stress distribution. In particular. when a certain relation between
the wedge inclination angle and the friction coefficient exists (cot @ > ), no pathological
stress singularities occur within the contact zone and, therefore, the solution exhibits a
more natural behavior as compared with the one given by the classical analysis of the
problem.

One final comment is also in order. It is felt that, in this class of elastodynamic
indentation problems, analytical solutions (like the present one) despite their obvious
limitations are more advantageous than numerical solutions (obtained by finite differences,
finite elements, or boundary elements) in some respects. For instance, (a) spurious waves
may be generated by the discontinuities due to the discretization, and (b) the true solution
may involve features on a scale smaller than the discretization used (e.g. the stress behavior
at the apex vicinity in the present problem will require a very fine mesh for its resolution).
Certain cases enforcing the foregoing statements have already been identified in a recent
work by Georgiadis and Barber (1993), studying general existence/uniqueness issues of
such elastodynamic indentation problems.
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